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Abstract

In this paper, employing the homogenization theory and the microscopic bifurcation condition established by the

authors, we discuss which microscopic buckling mode grows in elastic honeycombs subject to in-plane biaxial com-

pression. First, we focus on equi-biaxial compression, under which uniaxial, biaxial and flower-like modes may develop

as a result of triple bifurcation. By forcing each of the three modes to develop, and by comparing the internal energies,

we show that the flower-like mode grows steadily if macroscopic strain is controlled, while either the uniaxial or biaxial

mode develops if macroscopic stress is controlled. Second, by analyzing several cases other than equi-biaxial com-

pression, it is shown that a second bifurcation from either the uniaxial or biaxial mode to the flower-like mode, which is

distorted, occurs under biaxial compression in a certain range of biaxial ratio under macroscopic strain control. Finally,

the possibility of macroscopic instability under biaxial compression is discussed. � 2002 Elsevier Science Ltd. All rights

reserved.
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1. Introduction

Hexagonal honeycombs subject to in-plane compression exhibit microscopic buckling, the mode of
which depends on the condition of loading (Gibson et al., 1989; Gibson and Ashby, 1997; Papka and
Kyriakides, 1999; Chung and Waas, 2001). When the compression is uniaxial, two kinds of cell collapse
appear and alternate in the loading direction as a result of the buckling of cell walls. Under biaxial
compression, four-cell aggregates emerge and develop due to the buckling of cell walls, leading to a cell-
pattern with two orthogonal axes of symmetry. Another complex buckling mode, called the flower-like
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mode, was observed recently in a hexagonal honeycomb with circular cells under equi-biaxial compression
(Papka and Kyriakides, 1999); in this mode, six highly deformed cells surround a slightly deformed cell in a
petal-like fashion, so that the cell-pattern has a threefold symmetry of rotation. Thus, hexagonal honey-
combs can have three kinds of in-plane microscopic buckling modes.

The authors discussed in a previous paper how the three kinds of microscopic buckling modes appear
in honeycombs subject to in-plane biaxial loading (Ohno et al., 2002). To this end, a homogenization
framework was established to analyze the microscopic symmetric bifurcation buckling of cellular solids
subject to macroscopically uniform compression. The framework was based on a homogenization theory of
finite deformation and a postulate pertinent to microscopic symmetric bifurcation. By applying the pos-
tulate to the homogenization theory, the conditions to be satisfied at the onset of such bifurcation were
derived. Then, the in-plane biaxial buckling of an elastic hexagonal honeycomb was analyzed by em-
ploying the periodic unit consisting of four cells, which was used first by Saiki et al. (1999). It was thus
shown that the three kinds of buckling modes are classified as microscopic symmetric bifurcation, and
that vthe multiplicity of bifurcation gives rise to the complex cell-patterns in the biaxial and flower-like
modes.

When multiple bifurcations occur, bifurcation modes are not uniquely determined. In this case, ap-
propriate post-buckling analysis is necessary for discussing which mode develops after the onset of bi-
furcation. Here we note the following finding in the previous work (Ohno et al., 2002). The biaxial and
flower-like modes of honeycombs are consequences of double and triple bifurcations, respectively. Then,
since they are not unique modes, it is not obvious that they grow steadily after the onset of bifurcation.
Hence, it is worth performing post-buckling analysis to examine their developing.

The biaxial and flower-like modes were simulated successfully in full-scale finite element analyses of
honeycomb plates (Papka and Kyriakides, 1999; Guo and Gibson, 1999; Chung and Waas, 2001). In the
full-scale analyses, however, the multiplicity of bifurcation was not detected, and consequently multiple
bifurcation modes were not compared to discuss which mode develops after bifurcation. Triantafyllidis
and Schraad (1998) employed the Bloch wave to represent the velocity field at bifurcation in aluminum
honeycombs subject to in-plane biaxial compression, but they did not discuss the multiplicity of bifurca-
tion.

Macroscopic instability, i.e., localization of macroscopic deformation, can also occur in honeycombs
(Triantafyllidis and Schraad, 1998). It was observed that macroscopic incremental stiffness is in general
greatly reduced by microscopic buckling in cellular solids. This suggests that even if no macroscopic in-
stability occurs in honeycombs before the onset of microscopic bifurcation, it is necessary to consider
macroscopic instability in the post-buckling analysis. Macroscopic instability of cellular solids is charac-
terized by the loss of ellipticity in the incremental response of homogenized deformation behavior
(Abeyaratne and Triantafyllidis, 1984; Geymonat et al., 1993). The updated Lagrangean formulation was
employed in the homogenization theory of finite deformation in our previous work (Ohno et al., 2002). This
approach, therefore, readily allows us to detect macroscopic instability.

In this paper, we will discuss which microscopic buckling mode develops in biaxially compressed
honeycombs, the cell walls of which are idealized to have a hypo-elastic property based on Hook’s law.
First, we will focus on equi-biaxial compression, under which the uniaxial, biaxial and flower-like modes
may occur as a result of triple bifurcation. Each of the three modes will be forced to develop by impos-
ing appropriate constraints on the microscopic velocity field in a periodic unit, and then the internal
energies generated will be compared to discuss which mode can be preferred. Second, by analyzing sev-
eral cases other than equi-biaxial compression, we will map the buckling modes appearing under biaxial
compression. It will be thus shown that a second bifurcation from either the uniaxial or biaxial mode to
the flower-like mode, which is distorted, occurs under biaxial compression in a certain range of biaxial
ratio of macroscopic strain control. Finally, we will discuss macroscopic instability under biaxial com-
pression.
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2. Theory

We first briefly review the homogenization theory, the bifurcation condition, and the computational
procedure developed in the previous work (Ohno et al., 2002).

2.1. Microscopic relations

Using the updated Lagrangian formulation, we analyze the deformation behavior of an infinite body B,
which has a periodic internal structure and is subject to macroscopically uniform stress and strain under no
body force. Let Y be the current configuration of a unit cell of B, and let us take Cartesian coordinates
yi ði ¼ 1; 2; 3Þ for Y. Hereafter, ð Þ;i will stand for the differentiation with respect to yi, and ð_Þ will designate
the material derivative. Moreover, we will use the summation convention, unless otherwise stated.

Let us decompose velocity _uui into the macroscopic part _uu0i representing global deformation and the
perturbed part _uu�i , i.e., the deviation of _uui from _uu0i :

_uui ¼ _uu0i þ _uu�i : ð1Þ
Then, defining strain rate _eeij to be _eeij ¼ ð _uui;j þ _uuj;iÞ=2, we have

_eeij ¼ _ee0ij þ _ee�ij; ð2Þ

where _ee0ij ¼ ð _uu0i;j þ _uu0j;iÞ=2 and _ee�ij ¼ ð _uu�i;j þ _uu�j;iÞ=2. It is noted that _ee0ij is uniform in Y, and that _uu�i and _ee�ij are Y-
periodic.

We assume that each constituent of B has a constitutive relation

_ssij ¼ cijkl _eekl; ð3Þ
where cijkl indicates stiffness and satisfies cijkl ¼ cjikl ¼ cijlk ¼ cklij, and _ssij denotes Truesdell’s stress rate; _ssij is
related to the nominal stress rate in the updated Lagrangian formulation, _ppij, and the material derivative of
Cauchy’s stress rij, _rrij, as follows:

_ssij ¼ _ppij � rik _uuj;k ¼ _rrij � rik _uuj;k � rjk _uui;k þ rij _uuk;k: ð4Þ

2.2. Homogenization

We introduce a volume average in Y,

h#i ¼ 1

jY j

Z
Y
#dY ; ð5Þ

where Yj j indicates the volume of Y. Then, it can be shown that h _eeiji ¼ _ee0ij and h _uui;ji ¼ _uu0i;j. It also can be
shown that the work rate per unit cell Y is expressed as

_UU ¼ hrij _eeiji Yj j ¼ Rij _ee
0
ij Yj j; ð6Þ

where Rij ¼ hriji. Moreover, it can be proved that Eq. (4) is transformed to

_SSij ¼ _PPij � Rik _uu0j;k ¼ _RRij � Rik _uu0j;k � Rjk _uu0i;k þ Rij _uu0k;k; ð7Þ

where _PPij ¼ h _ppiji and _SSij ¼ h_ssiji.
Substituting Eq. (3) with (2) and (4) into the principle of virtual work suggested by Hill (1963, 1967) and

shown to be exact for periodic materials by Suquet (1985, 1987), we can derive

_SSij ¼ hcijklð _ee0kl þ _ee�klÞi; ð8Þ
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Z
Y
ðcijpq þ diprjqÞ _uu�p;qd _uu�i;jdY ¼ � _ee0kl

Z
Y
cijkld _uu�i;j dY ; ð9Þ

where dij indicates Kronecker’s delta, and d _uu�i is any Y-periodic velocity field.
Eq. (8) is the volume average of the constitutive relation (3) in Y; in other words, Eq. (8) is regarded as

the macroscopic constitutive relation of B. On the other hand, Eq. (9) is the boundary value problem to
find the current field of perturbed velocity in Y, _uu�i ðy; tÞ, where y and t indicate yi and time, respectively. It is
seen from Eq. (9) that _uu�i ðy; tÞ has a solution (e.g., Bensoussan et al., 1978; Sanchez-Palencia, 1980)

_uu�i ðy; tÞ ¼ vkl
i ðy; tÞ _ee0klðtÞ: ð10Þ

The function vkl
i ðy; tÞ in the above equation is determined by solvingZ

Y
ðcijpq þ diprjqÞvkl

p;qd _uu
�
i;jdY ¼ �

Z
Y
cijkld _uu�i;jdY ; ð11Þ

where vkl
i ðy; tÞ is required to be Y-periodic, and d _uu�i is any Y-periodic velocity field.

Substitution of Eq. (10) into (8) gives

_SSij ¼ Cijkl _ee
0
kl: ð12Þ

where Cijkl ¼ hcijkl þ cijpqvkl
p;qi. By taking d _uu�i ¼ vmn

i in (11), we can show that Cijkl becomes

Cijkl ¼ hcijkl � ðcpqrs þ dprrqsÞvij
p;qv

kl
r;si: ð13Þ

Therefore, Cijkl satisfies the same symmetry as cijkl, i.e., Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij.

2.3. Microscopic symmetric bifurcation

Microscopic buckling may occur symmetrically in periodic cellular solids because of the geometrical
symmetries of their microstructures. Supposing that such symmetric bifurcation occurs, we adopt the
following geometrically-motivated postulate: At the onset of microscopic symmetric bifurcation, perturbed
velocity becomes spontaneous, but changing the sign of spontaneous perturbed velocity everywhere in B has no
influence on the variation in macroscopic states. Applying this postulate to Eqs. (8) and (9), we can deriveZ

Y
ðcijpq þ diprjqÞ _uu�p;qd _uu�i;j dY ¼ 0: ð14Þ

Z
Y
cijkl _ee�kl dY ¼ 0; ð15Þ

_ee0ij ¼ 0; ð16Þ

_SSij ¼ 0: ð17Þ

We thus see that the spontaneous velocity field at the onset of microscopic symmetric bifurcation is
governed by Eq. (14) and satisfies the orthogonality with stiffness as expressed by Eq. (15), and that the
spontaneous velocity field accompanies no variation in macroscopic states. It is noted that Eq. (14) has the
same form as the instability condition derived by Hill (1958), and that Eq. (15) can be interpreted as an
orthogonality condition familiar in classical bifurcation analysis. It is also noted that Eqs. (16) and (17)
express no macroscopic instability taking place at the onset of microscopic symmetric bifurcation.
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2.4. Computational procedure

Using finite element methods, the boundary value problems (9) and (14) are discretized as K _uu� ¼ �N _ee0

and K _uu� ¼ 0, respectively, where K and N represent tangential stiffness and nodal force matrices, _uu� in-
dicates the nodal vector of perturbed velocity, and _ee0 is the vector for _ee0ij. Hence, if we have detðKÞ ¼ 0, we
obtain the nontrivial solution / satisfying K/ ¼ 0, and then we examine the macroscopic equivalence
between / and �/. If they are found macroscopically equivalent, the postulate allows us to conclude that
microscopic symmetric bifurcation occurs, and we confirm that / satisfies the orthogonal condition (15),
which has a discretized form NT/ ¼ 0. Subsequently, we calculate the small changes in ui and rij resulting
from _uu� ¼ v/, where v is taken to be sufficiently small. Then, by adding the changes to the current values of
ui and rij, we are led to a secondary path. Here we remember that no variation in macroscopic states is
induced at the onset of microscopic symmetric bifurcation.

3. Buckling modes

Using the theory described in the preceding section, the in-plane biaxial buckling modes and loads of an
elastic honeycomb at the onset of microscopic symmetric bifurcation were analyzed in the previous work
(Ohno et al., 2002). Some of the findings in that work are given here with emphasis on the buckling modes
under equi-biaxial compression.

Fig. 1 illustrates the honeycomb analyzed, which was supposed to be infinitely large and was subjected to
in-plane biaxial compressive stresses R11 < 0 and R22 < 0. The thickness and length of cell walls, w and ‘,
had a ratio of w=‘ ¼ 0:1, and the cell walls were assumed to obey a hypo-elastic law with Young’s modulus
E and Poisson’s ratio m. The aggregate of four cells indicated by the dashed line in Fig. 1 was taken to be the
periodic unit Y on the basis of the following consideration: The buckling of cell walls can cause the al-
ternation of two kinds of cell rows in each of the three directions of cell walls, as indicated by þ and �, 

and �, and A and a in the figure, resulting in the periodic unit consisting of the four kinds of cells labeled
þ
A, þ�a, ��A and �
a. This periodic unit, which was used first by Saiki et al. (1999), was divided into
finite elements, as shown in Fig. 2. The boundary condition to solve Eqs. (9) and (14) is the Y-periodicity of

Fig. 1. Hexagonal honeycomb subject to in-plane biaxial compression; dashed lines indicate periodic unit.
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vkl
i and _uu�i . The chain, dashed and dotted lines in Fig. 2 indicate three pairs of boundary sides of Y, on each

of which the Y-periodic boundary condition is imposed (see Wu and Ohno, 1999; Ohno et al., 2000).
It was found that simple, double and triple bifurcations occur when R22 < R11 < 0, R11 < R22 < 0 and

R11 ¼ R22 < 0, respectively, and that the multiple bifurcations bring about the complex cell-patterns in the
biaxial and flower-like modes observed by Gibson et al. (1989), Papka and Kyriakides (1999), and Chung
and Waas (2001).

Fig. 3 depicts the three independent buckling modes /ð90Þ, /ð�30Þ and /ð30Þ determined in the case of equi-
biaxial compression (i.e., R11 ¼ R22 < 0). In this case, the same compressive load is conveyed in the three

Fig. 2. Periodic unit and finite element mesh (w=‘ ¼ 0:1; 1729 nodes; 1248 elements); chain, dashed and dotted lines indicate three

periodic pairs of boundary sides, and small solid circles designate the nodal points with _uu�i ¼ 0.

Fig. 3. Three basic modes for the buckling under equi-biaxial compression.
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directions of cell walls, h ¼ 90�, �30� and 30�. Consequently, the three independent buckling modes, which
belong to the uniaxial buckling mode called Mode I, can simultaneously prevail in the three directions of
cell walls, so that we have the buckling mode shown in Fig. 4(c), where the shaded area results from
/ ¼ /ð90Þ þ /ð�30Þ þ /ð30Þ and is repeated owing to the Y-periodicity. This kind of buckling mode, which will
be referred to as Mode III hereafter, was observed in a hexagonal honeycomb with circular cells under equi-
biaxial compression (Papka and Kyriakides, 1999).

However, any linear combination of /ð90Þ, /ð�30Þ and /ð30Þ can be a nontrivial solution of Eq. (14), so that
buckling modes other than Mode III are possible at the onset of bifurcation under equi-biaxial compres-
sion. For example, if R22j j is slightly larger than R11j j, the uniaxial buckling mode in the y2 direction only,
i.e., /ð90Þ, may well occur, as shown in Fig. 4(a). On the other hand, if R11j j is slightly larger than R22j j, we
may expect /ð�30Þ þ /ð30Þ to develop (Fig. 4(b)), because the cell walls in the two directions of h ¼ �30� are
subjected to the same compressive load, which is slightly larger than in the direction of h ¼ 90�. The
buckling mode /ð�30Þ þ /ð30Þ, which will be referred to as Mode II from now on, was observed first by
Gibson et al. (1989). We thus can say that Modes I, II and III shown in Fig. 4 are representative possible
modes of buckling under equi-biaxial compression.

4. Mode growth under equi-biaxial compression

In this section, analyzing the post-buckling behavior of the honeycomb shown in Fig. 1, we discuss
which buckling mode grows after the onset of multiple bifurcation. We focus on equi-biaxial compression,

Fig. 4. Representative possible modes for the buckling under equi-biaxial compression.
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under which triple bifurcation occurs and the possible representative modes are Modes I, II and III
illustrated in Fig. 4. We compare the internal energies generated by the three modes, each of which is
forced to grow by imposing appropriate constraints on the perturbed velocity field in Y.

4.1. Constraints and loading conditions

Let us repeat that under equi-biaxial compression, the multiplicity of bifurcation, m, becomes three,
leading to non-unique bifurcation modes. It is, however, possible to reduce m to one by imposing ap-
propriate constraints on the _uu�i field in Y so that one of Modes I, II and III can grow exclusively. Fig. 5
shows the necessary and additional constraints for each of the three modes to grow. The necessary con-
straint, which prevents rigid translation of Y, is always imposed at a set of three points indicated by solid
circles in the figure; it is noted that if _uu�i ¼ 0 at one of the three points, the other two points are obliged to
have _uu�i ¼ 0 because of the Y-periodic boundary condition. The additional constraints, which are intro-
duced to reduce m from three to one, are given at the points indicated by open circles and squares. We have
confirmed that the additional constraints have no influence on buckling loads and allow each of the three
modes to grow.

The post-buckling analysis has been done by considering two equi-biaxial compression conditions

_ee011 ¼ _ee022 < 0; R33 ¼ 0; ð18Þ

_RR11 ¼ _RR22 < 0; R33 ¼ 0: ð19Þ

It is noted that r33 6¼ 0 even if R33 ¼ 0. Here we remember that the honeycomb analyzed is infinitely large in
the y1, y2 and y3 directions. In practice, the honeycomb must have a finite size and be subjected to either

Fig. 5. Constraints on perturbed velocity field in Y; solid and open symbols indicate necessary and additional constraints, respectively.
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displacement or load control at the boundary. The loading conditions expressed as Eqs. (18) and (19)
correspond, respectively, to the displacement and load controls at the boundary in the y1y2 plane.

We emphasize that the loading conditions (18) and (19) give the same results as long as the honeycomb
has in-plane quasi-isotropy. Before the onset of bifurcation, therefore, the two conditions are identical to
each other. Moreover, if Mode III develops after the onset of bifurcation, the two conditions remain the
same, because Mode III has a threefold symmetry of in-plane rotation, which provides the honeycomb with
in-plane quasi-isotropy (see e.g. Cristensen, 1979). However, if Modes I or II grows after the onset of
bifurcation, the honeycomb no longer possesses in-plane quasi-isotropy, and consequently the two con-
ditions give different results.

4.2. Mode growth test

Before discussing which mode grows among the three possible modes under equi-biaxial compression,
we recall that the time rate of internal energy U generated in Y is represented as Eq. (6), which takes the
following forms under the two loading conditions (18) and (19), respectively:

_UU ¼ ðR11 þ R22Þ _ee011 Yj j ðmacro-strain controlÞ; ð20Þ

_UU ¼ R11ð _ee011 þ _ee022Þ Yj j ðmacro-stress controlÞ: ð21Þ

Since the honeycomb retains high stiffness in the y3 direction even after the onset of microscopic buckling,
e033 is small, so that Yj j is expressed as

Yj j � expð2e011Þ Y ð0Þj j ðmacro-strain controlÞ; ð22Þ

Yj j � expðe011 þ e022Þ Y ð0Þj j ðmacro-stress controlÞ; ð23Þ

where Y ð0Þj j signifies the initial volume of Y.
Fig. 6(a) shows the macroscopic stress versus strain relations computed in the case of macroscopic strain

control with the additional constraints on _uu�i ðy; tÞ. Average stress ðR11 þ R22Þ=2 nondimensionalized with
Eðw=‘Þ3 is taken as the ordinate in the figure. By virtue of Eqs. (20) and (22), then, we see that the internal
energy generated by Mode III is lowest, leading to the prediction that Mode III is preferred. In order to
verify the prediction, we have performed the computation without any additional constraint on _uu�i ðy; tÞ. We
thus have obtained the following results: Mode III does grow without any additional constraint, giving the
same result as with the additional constraints; on the other hand, Modes I and II become unstable and
change into Mode III almost immediately after turning to the secondary paths. We, therefore, can conclude
that Mode III grows under macroscopic strain control, even if the small perturbations in u�i based on
Modes I and II are set at the bifurcation point.

Let us discuss the case of macroscopic stress control. In this case, Mode I induces the lowest internal
energy among the three modes if the additional constraints are imposed on _uu�i ðy; tÞ, as shown in Fig. 6(b), in
which average strain ðe011 þ e022Þ=2 is taken in the abscissa by considering Eqs. (21) and (23). This result
suggests that Mode I may grow even if no additional constraint is imposed on _uu�i ðy; tÞ. In order to examine
this, we have performed the computation without any additional constraint under macroscopic stress
control. We thus have found that not only Mode I but also Mode II grows without any additional con-
straint and gives the same result as with the additional constraints, whereas Mode III becomes unstable and
changes into Mode II almost immediately after the bifurcation point. Therefore, the bifurcation mode to be
preferred under equi-biaxial compression depends on which is controlled, macroscopic strain or macro-
scopic stress.

Fig. 7 depicts the macroscopic strain trajectories exhibited by Modes I and II under macroscopic stress
control as well as by Mode III under macroscopic strain control. As seen from the figure, the three
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trajectories are completely different, though they are identical up to the onset of bifurcation. The cell-
patterns in the three modes are also illustrated in the figure. It is noticed that under macroscopic stress
control, macroscopic strain does not enter the region bounded by the trajectories labeled I and II.

5. Buckling mode maps

The flower-like mode, i.e., Mode III, is possible only under equi-biaxial compression, since it occurs as a
consequence of triple bifurcation. In the last section, we have shown that Mode III does grow steadily
under macroscopic strain-controlled equi-biaxial compression. This result, however, does not fully account
for the experimental findings of Papka and Kyriakides (1999). They observed an almost flower-like mode
under displacement control of e022=e

0
11 ¼ 2.

We thus have been motivated to perform post-buckling analyses for several cases of macroscopic strain
control

_ee022 ¼ ce _ee
0
11 < 0; R33 ¼ 0; ð24Þ

where ce is positive. For the above loading condition, Eq. (6) is reduced to

Fig. 6. Macroscopic stress versus strain relations attained in the analysis with additional constraints; (a) macroscopic strain control,

and (b) macroscopic stress control.
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_UU ¼ ðR11 þ ceR22Þ _ee011 Yj j; ð25Þ

and Eq. (22) becomes

Yj j � exp½ð1þ ceÞe011� Y ð0Þj j: ð26Þ

Fig. 8 shows the macroscopic stress versus strain relations computed in near-equi-biaxial cases of
ce ¼ 3=2 and 3=4, respectively. In both cases, bifurcation occurs twice; the first and second bifurcation
points are indicated by A and B in the figures. When ce ¼ 3=2, simple bifurcation is followed by double
bifurcation; on the other hand, when ce ¼ 3=4, double bifurcation first occurs, and simple bifurcation
follows. Let us note that R11 þ ceR22 and e011, which are the conjugate in Eq. (25), are taken on the ordinate
and abscissa in the figure. With Eqs. (25) and (26) in mind, then, it can be seen from the figure that the
second bifurcations cause more or less the reduction in _UU . In other words, the second bifurcations bring the
honeycomb into mechanically stabler states.

Fig. 8. Macroscopic stress versus strain relations under near-equi-biaxial compression of macroscopic strain control.

Fig. 7. Macroscopic strain trajectories and cell-patterns under equi-biaxial compression.
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Fig. 9 illustrates the changes in buckling modes in the two cases discussed above. When ce ¼ 3=2, simple
and double bifurcations occur at points A and B, respectively, as mentioned above; consequently, Mode I
grows from A to B, and then a new mode starts to develop at B. The new mode begins developping by a
small perturbation in u�i at B, and then it grows to a distorted flower-like cell-pattern, in which six cells with
large deformation surround relatively undeformed central, as seen in Fig. 9(a). This mode, which will be
referred to as the distorted flower-like mode or Mode III0 henceforth, is a little different from the flower-like

Fig. 9. Change in buckling mode under near-equi-biaxial compression of macroscopic strain control.
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mode, in which the cell at the center of each flower has almost no deformation. When ce ¼ 3=4, double
bifurcation occurs first, leading to the growth of Mode II from point A to B; at point B, simple bifurcation
occurs and another mode begins developing, leading to the activation of Mode III0, as depicted in Fig. 9(b).
Thus, in both cases, the distorted flower-like cell-pattern eventually prevails.

It is noted that when ce ¼ 3=2, the new mode at B cannot be uniquely triggered because of double bi-
furcation but grows appropriately irrespective of the perturbation in u�i introduced at B, as in the case of
equi-biaxial compression discussed in the last section.

Fig. 10 shows the buckling mode map based on the post-buckling analysis performed for several values
of ce without any additional constraint under macroscopic strain control. As seen in the figure, Modes I and

Fig. 10. Map of buckling modes under biaxial compression of macroscopic strain control; solid and open circles represent first and

second bifurcation points, respectively, and chain line indicates potential initiation of macroscopic instability.

Fig. 11. Map of buckling modes under biaxial compression of macroscopic stress control; chain line indicates potential initiation of

macroscopic instability.
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II continue to develop after the onset of the first bifurcation if e022
�� �� � e011

�� �� and e011
�� �� � e022

�� ��, respectively;
otherwise, a second bifurcation occurs, resulting in the growth of Mode III0, though it is Mode III that
develops if e011

�� �� ¼ e022
�� ��. The mode map is consistent with the experiment of Papka and Kyriakides (1999),

since they eventually observed Modes II, III and III0, when ce ¼ 1=3, 1.0 and 2.0, respectively.
The post-buckling analysis without additional constraint has been further performed under macroscopic

stress-controlled biaxial compression

_RR22 ¼ cR
_RR11 < 0; R33 ¼ 0; ð27Þ

where cR is positive. However, no second bifurcation has been detected. The buckling modes under mac-
roscopic stress control are Modes I and II, which are mapped in Fig. 11.

6. Macroscopic instability

Abeyaratne and Triantafyllidis (1984) studied the macroscopic instability of a porous elastic material
subject to biaxial loading by use of a homogenization theory. In the present problem, since microscopic
buckling causes significant reduction in macroscopic stiffness, the possibility of macroscopic instability
becomes much higher after the onset of microscopic bifurcation.

6.1. Macroscopic instability condition

Eqs. (7) and (12) provide

_PPji ¼ Lijkl _uu0k;l; ð28Þ

where Lijkl ¼ Cijkl þ dikRjl, and Lijkl satisfies Lijkl ¼ Lklij because of the symmetry of Cijkl. With Lijkl in the
above equation, the acoustic tensor regarding a macroscopic surface with normal �nni is defined as

�AAik ¼ Lijkl�nnj�nnl: ð29Þ
Then, the instant we find a direction �mmk satisfying

�AAik �mmk ¼ 0; ð30Þ
macroscopic localization with velocity gradient �mmk�nnl occurs across the macroscopic surface (Rice, 1976).
Thus, the condition of macroscopic instability is expressed as

det �AAik ¼ 0: ð31Þ

6.2. Macroscopic instability under in-plane biaxial compression

Let us assume that the normal �nni is in the y1y2 plane, where the honeycomb analyzed has low macro-
scopic stiffness especially after the onset of microscopic bifurcation.

For Modes I and II, Cijkl is orthotropic with respect to the yi-axis (i ¼ 1, 2, 3), so that �AAik defined by Eq.
(29) has nonzero components

�AA11 ¼ ðC1111 þ R11Þ�nn21 þ ðC1212 þ R22Þ�nn22; ð32aÞ

�AA22 ¼ ðC1212 þ R11Þ�nn21 þ ðC2222 þ R22Þ�nn22; ð32bÞ

�AA33 ¼ ðC1313 þ R11Þ�nn21 þ ðC2323 þ R22Þ�nn22; ð32cÞ
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�AA12 ¼ �AA21 ¼ ðC1122 þ C1212Þ�nn1�nn2; ð32dÞ

where �nn1 ¼ coswn, �nn2 ¼ sinwn, and wn denotes the angle between the normal �nni and the y1-axis. Then, the
macroscopic instability condition (31) becomes

det �AAik ¼ ð�AA11
�AA22 � �AA2

12Þ�AA33 ¼ 0: ð33Þ

Eqs. (32a)–(32d) and (33) are also valid for Mode III0, since Cijkl in this mode has been numerically
confirmed to be orthotropic with respect to the yi-axis (i ¼ 1, 2, 3).

For Mode III, Cijkl satisfies in-plane quasi-isotropy because of its threefold symmetry of in-plane ro-
tation; then, C1111 ¼ C2222, C1313 ¼ C2323, and C1111 � C1122 ¼ 2C1212 (see Sokolnikoff, 1956). Here we re-
member that Mode III occurs only when _ee011 ¼ _ee022 < 0. Then, _RR11 ¼ _RR22 < 0 because of in-plane quasi-
isotropy, so that Eqs. (32a)–(32d) become

�AA11 ¼ ðC1111 þ R11Þ�nn21 þ ðC1212 þ R11Þ�nn22; ð34aÞ

�AA22 ¼ ðC1212 þ R11Þ�nn21 þ ðC1111 þ R11Þ�nn22; ð34bÞ

�AA33 ¼ C1313 þ R11; ð34cÞ

�AA12 ¼ �AA21 ¼ ðC1111 � C1212Þ�nn1�nn2: ð34dÞ

Eq. (33) is then reduced to

det �AAik ¼ ðC1111 þ R11ÞðC1212 þ R11ÞðC1313 þ R11Þ ¼ 0; ð35Þ

which does not depend on �nni because of in-plane quasi-isotropy.
Eq. (35) has three possibilities, i.e., C1111 þ R11 ¼ 0, C1212 þ R11 ¼ 0, and C1313 þ R11 ¼ 0. Using Eqs. (30)

and (34a)–(34d), then, we can show the following: If C1111 þ R11 ¼ 0, �mmi is in the y1y2 plane and parallel to
�nni. If C1212 þ R11 ¼ 0, �mmi is in the y1y2 plane and perpendicular to �nni. If C1313 þ R11 ¼ 0, �mmi is in the y3 di-
rection and perpendicular to �nni.

6.3. Macroscopic instability of the honeycomb analyzed

The possibility of macroscopic instability has been first examined in the case of equi-biaxial compression
of macroscopic strain control (i.e., _ee011 ¼ _ee022 < 0). In this case, Mode III is the microscopic buckling mode
(Section 4.2), so that we can use the condition (35). It has been found that just after the onset of Mode III,
microscopic buckling renders C1212 þ R11 negative, and thus the condition (35) becomes satisfied. The
macroscopic instability resulting from C1212 þ R11 < 0 brings about in-plane shear localization, since �mmi is
determined to be in the y1y2 plane and perpendicular to �nni (Section 6.2). The in-plane shear localization,
however, cannot be compatible with the loading condition of _ee011 ¼ _ee022 < 0, as will be discussed shortly.

The possibility of macroscopic instability has been then explored in other cases of biaxial compression.
We thus have found that the macroscopic instability condition (33) is satisfied just after the onset of either
Mode II or III0, as listed in Table 1 and indicated by the chain lines in Figs. 10 and 11. In the table, wn and
wm denote the in-plane angles which the normal �nni and the direction �mmi, respectively, make with the y1-axis.

Let us discuss whether the macroscopic instability mentioned above is compatible with the loading
conditions based on macroscopic strain and stress controls. The two conditions correspond to the dis-
placement and load controls at the boundary if the honeycomb has a finite size. Fig. 12 schematically il-
lustrates the admissible velocity fields in macroscopic instability in the honeycomb plate of L1 � L2

subjected to either the displacement Ui or load Fi control at the boundary. As illustrated in the figure,
macroscopic instability can be realized in two cases
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�mm2 ¼ 0 if tanwn < L1=L2; ð36Þ

�mm1 ¼ 0 if tanwn > L1=L2: ð37Þ

It is seen from Table 1 that the macroscopic instability detected just after the onset of Modes II, III and III0

satisfies neither of the above two conditions and therefore cannot be substantial under the loading con-
ditions considered in the present work.

7. Conclusions

In this paper, using the homogenization theory and the symmetric bifurcation condition developed
previously (Ohno et al., 2002), we analyzed the post-buckling behavior of an elastic honeycomb subject to
in-plane biaxial compression. First, we focused on equi-biaxial compression, under which triple bifurcation
occurs. By comparing the internal energies generated by three representative modes, it was found that the
flower-like mode (Mode III) grows under macroscopic strain control, whereas either the uniaxial (Mode I)
or the biaxial mode (Mode II) develops under macroscopic stress control. Second, analyzing several cases
other than equi-biaxial compression, we found that the second bifurcation from either Mode I or II to the
distorted flower-like mode (Mode III0) happens under biaxial compression in a certain range of biaxial ratio
of macroscopic strain control. Third, examining the possibility of macroscopic instability, we found that
macroscopic localization becomes possible just after the onset of Modes II, III and III0 but cannot be
realized because of the incompatibility with the boundary condition of biaxial loading.

It will be of interest in the future to consider the plasticity or viscoplasticity of cell walls, since such
inelasticity enhances the possibility of macroscopic as well as microscopic instability under in-plane biaxial

Table 1

Macroscopic instability detected just after the onset of Modes II, III and III0; wn and wm � wn in degree

Macro-strain control ce
1
2

2
3

3
4

1 3
2

2

Mode II II II III III0 III0

wn 0 0 0 – 54 55

wm � wn 90 90 90 90 72 70

Macro-stress control cR
1
4

1
3

1
2

1

Mode II II II II

wn 0 0 0 0, 90

wm � wn 90 90 90 90

Fig. 12. Admissible velocity field in macroscopic instability in honeycomb plate subject to either displacement or load control at

boundary.
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loading. It will be also of interest to change the number of cells in the periodic unit, which was four in the
present work. Moreover, it will be of significance to analyze in general the in-plane buckling of honeycombs
by establishing the microscopic bifurcation condition without recourse to its symmetry.
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